
PancakeSwap Security Review
Pashov Audit Group

Conducted by: 0xbrivan, Hals, As3ros, crunter, Bretzel, solidit
April 28th 2025 - May 2nd 2025

Contents
1. About Pashov Audit Group
2. Disclaimer
3. Introduction
4. About PancakeSwap
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Findings

8.1. Medium Findings
[M-01] Different token decimals in bridging lead to user
losses

8.2. Low Findings
[L-01] Output amount incorrect when input and output
tokens differ
[L-02] Bridge relayerFeePct limits block small token
transfers
[L-03] Whitelist blacklist missing key ERC20 selector
[L-04] Whitelisting bridge() enables bypassing single-
bridge limit
[L-05] Resetting approval to zero may fail with some
non-standard tokens
[L-06] Bridging fee-on-transfer tokens may fail
transactions
[L-07] Swaps with approve flow do not use full
CONTRACT_BALANCE

1

2

2

2

2

3

3
3
4

4

5

7

7

7

9

9

9

10

11

12

13

13

1. About Pashov Audit Group
Pashov Audit Group consists of multiple teams of some of the best smart contract
security researchers in the space. Having a combined reported security
vulnerabilities count of over 1000, the group strives to create the absolute very best
audit journey possible - although 100% security can never be guaranteed, we do
guarantee the best efforts of our experienced researchers for your blockchain
protocol. Check our previous work here or reach out on Twitter @pashovkrum.

2. Disclaimer
A smart contract security review can never verify the complete absence of
vulnerabilities. This is a time, resource and expertise bound effort where we try to
find as many vulnerabilities as possible. We can not guarantee 100% security after
the review or even if the review will find any problems with your smart contracts.
Subsequent security reviews, bug bounty programs and on-chain monitoring are
strongly recommended.

3. Introduction
A time-boxed security review of the pancakeswap/cross-chain-swaps-contracts
repository was done by Pashov Audit Group, with a focus on the security aspects
of the application's smart contracts implementation.

4. About PancakeSwap
The cross-chain contracts of PancakeSwap enable users to swap tokens between
different blockchains by combining on-chain swaps with cross-chain bridging,
supporting scenarios like swap→bridge, bridge→swap, and swap→bridge→swap.
It consists of two main contracts — XChainSender (initiates swaps and bridges) and
AcrossAdapter (handles cross-chain execution) — using a Dispatcher pattern for
whitelisted function calls, currently integrating with Across Protocol for bridging.

2

https://github.com/pashov/audits
https://twitter.com/pashovkrum

5. Risk Classification

Severity Impact: High Impact: Medium Impact: Low

Likelihood: High Critical High Medium

Likelihood: Medium High Medium Low

Likelihood: Low Medium Low Low

5.1. Impact

High - leads to a significant material loss of assets in the protocol or significantly
harms a group of users.
Medium - only a small amount of funds can be lost (such as leakage of value) or a
core functionality of the protocol is affected.
Low - can lead to any kind of unexpected behavior with some of the protocol's
functionalities that's not so critical.

5.2. Likelihood

High - attack path is possible with reasonable assumptions that mimic on-chain
conditions, and the cost of the attack is relatively low compared to the amount of
funds that can be stolen or lost.
Medium - only a conditionally incentivized attack vector, but still relatively
likely.
Low - has too many or too unlikely assumptions or requires a significant stake by
the attacker with little or no incentive.

3

5.3. Action required for severity levels

Critical - Must fix as soon as possible (if already deployed)
High - Must fix (before deployment if not already deployed)
Medium - Should fix
Low - Could fix

6. Security Assessment Summary
review commit hash - d8c1c31a8b92eaaac76280c543004904e882fef2

fixes review commit hash - cba10e3056e95f9bd6c9c8f19ea730b90e437945

Scope

The following smart contracts were in scope of the audit:

XChainSender

Dispatcher

AcrossAdapter

ReentrancyGuardTransient

Payments

PCSOrder

LibAddress

Constants

Commands

4

https://github.com/pancakeswap/cross-chain-swaps-contracts/tree/d8c1c31a8b92eaaac76280c543004904e882fef2
https://github.com/pancakeswap/cross-chain-swaps-contracts/tree/cba10e3056e95f9bd6c9c8f19ea730b90e437945

7. Executive Summary
Over the course of the security review, 0xbrivan, Hals, As3ros, crunter, Bretzel,
solidit engaged with PancakeSwap to review PancakeSwap. In this period of time a
total of 8 issues were uncovered.

Protocol Summary
Protocol
Name PancakeSwap

Repository https://github.com/pancakeswap/cross-chain-swaps-
contracts

Date April 28th 2025 - May 2nd 2025

Protocol Type DEX

Findings Count
Severity Amount

Medium 1

Low 7

Total Findings 8

5

Summary of Findings
ID Title Severity Status

[M-01] Different token decimals in bridging
lead to user losses Medium Resolved

[L-01] Output amount incorrect when input
and output tokens differ Low Resolved

[L-02] Bridge relayerFeePct limits block
small token transfers Low Resolved

[L-03] Whitelist blacklist missing key
ERC20 selector Low Resolved

[L-04] Whitelisting bridge() enables
bypassing single-bridge limit Low Resolved

[L-05] Resetting approval to zero may fail
with some non-standard tokens Low Resolved

[L-06] Bridging fee-on-transfer tokens may
fail transactions Low Acknowledged

[L-07] Swaps with approve flow do not use
full CONTRACT_BALANCE Low Resolved

6

8. Findings

8.1. Medium Findings

[M-01] Different token decimals in bridging
lead to user losses

Severity
Impact: High

Likelihood: Low

Description
When bridging tokens via AcrossAdapter::bridge , the amount of output
tokens that the relayer will send to the recipient on the destination chain is
computed as follows:

uint256 outputAmt;
unchecked {
 // will not underflow as acrossData.relayerFeePct is less than 1e17 from
 // validation above
 outputAmt = (bridgeData.inputAmount *
 (1e18 - acrossData.relayerFeePct)) / 1e18;
}

This calculation does not account for the fact that some tokens, such as USDT,
have different decimal configurations across chains. For instance, USDT uses 6
decimals on Arbitrum and 18 decimals on Binance chain. The impact depends
on the user whether he cares about the minimum output amount and in both
cases the impact is high:

if (outputAmt < bridgeData.minOutputAmount) revert OutputAmountTooLow
 (bridgeData.minOutputAmount, outputAmt);

1. Bridging for example 60e6 USDT (representing $60 on Arbitrum) from
Arbitrum to Binance should result in 60e18 in Binance, so the

7

https://www.arbiscan.io/token/0xfd086bc7cd5c481dcc9c85ebe478a1c0b69fcbb9
https://www.arbiscan.io/token/0xfd086bc7cd5c481dcc9c85ebe478a1c0b69fcbb9
https://opbnb.bscscan.com/token/0x9e5aac1ba1a2e6aed6b32689dfcf62a509ca96f3

bridgeData.minOutputAmount supplied by the user will be ~60e18. But the
outputAmt does not scale decimals, so the value will always be much
smaller and the above condition will always evaluate to false, causing the tx
to always revert and leading to DoS.

2. If the user does not care about the slippage incurred in the output amount,
the minOutputAmt could be set to zero, in which significant value loss will
happen for the user. For example, sending 60e6 USDT (representing $60 on
Arbitrum) would only result in 60e6 on Binance, which is worth
approximately $0.000000000060.

Recommendations
Adjust the calculation to properly scale token amounts based on the decimal
differences between source and destination chains.

8

8.2. Low Findings

[L-01] Output amount incorrect when input
and output tokens differ

The AcrossAdapter.bridge function calculates the outputAmt based on the
inputAmount and relayerFeePct , assuming that both input and output tokens
have equivalent value and decimal precision. However, in cross-chain
scenarios where inputToken and outputToken represent different assets (e.g.,
USDC → BTC), this calculation produces incorrect results.

For example in a real transaction on Base:
https://basescan.org/tx/0x839fec7245fd4e9f64f94ae6f2d86fcced0a03a2361bdb
a04173077550c0f108

inputToken: 0x0b2C639c533813f4Aa9D7837CAf62653d097Ff85 (USDC in
OP mainnet).
outputToken: 0xcbB7C0000aB88B473b1f5aFd9ef808440eed33Bf (cbBTC
in Base).
inputAmount: 6000000.
outputAmount: 6071.

uint256 outputAmt;
 unchecked {
 // will not underflow as acrossData.relayerFeePct is less than 1e17
 // from validation above
 outputAmt = (bridgeData.inputAmount *
 (1e18 - acrossData.relayerFeePct)) / 1e18;
 }

It can lead to the bridge transaction not being filled.

[L-02] Bridge relayerFeePct limits block
small token transfers

The bridge function in the AcrossAdapter contract enforces a strict range for
the relayer fee percentage (relayerFeePct), limiting it between 0.001% (1e13)

9

and 10% (1e17):

// sanity check: relayer fee should not be gt 1e17 = 10% or lt 1e13 =
 // 0.001%
 if (acrossData.relayerFeePct > 1e17) revert RelayerFeePctTooHigh
 (acrossData.relayerFeePct);
 if (acrossData.relayerFeePct < 1e13) revert RelayerFeePctTooLow
 (acrossData.relayerFeePct);

These hard limits prevent the protocol from supporting small token transfers
where fees would exceed the 10% maximum. When bridging small amounts,
relayers may require higher percentage fees to compensate for fixed gas costs
on the destination chain, especially when:

The input amount is very minimal (e.g., 1-10 USDC).
The destination chain has high gas costs.
There are multiple commands to execute after bridging.

For example, bridging just 1 USDC from Optimism to Ethereum might require
a 23% relayer fee to be economically viable for relayers, but the contract
would reject this transaction due to the 10% cap.

[L-03] Whitelist blacklist missing key
ERC20 selector

While the function correctly blacklists transferFrom (0x23b872dd) and
approve (0x095ea7b3), it fails to blacklist other important ERC20 functions
that could pose similar risks, such as increaseAllowance (0x39509351).

The increaseAllowance function, which is widely implemented in tokens
using OpenZeppelin's ERC20 implementation (version 4.x.x and below),
provides an alternative way to increase token allowances. If this selector is
whitelisted for a token contract, it could potentially be exploited to approve the
spending of tokens from the contract, circumventing the security measure
intended by blacklisting approval.

10

function setSwapFunctionWhitelist
 (address target, bytes4 selector, bool status) external onlyOwner {
 if (target == address(0)) revert AddressZero();

 // blacklist 2 selector: 0x23b872dd: IERC20.transferFrom and
 // 0x095ea7b3: IERC20.approve
 if
 (selector == 0x23b872dd || selector == 0x095ea7b3) revert InvalidWhiteli

 swapFunctionWhitelisted[keccak256(abi.encode
 (target, selector))] = status;

 emit SetSwapFunctionWhitelist(target, selector, status);
 }

It's recommended to blacklist the selector IERC20.increaseAllowance
(0x39509351).

[L-04] Whitelisting bridge() enables
bypassing single-bridge limit

The Dispatcher.setSwapFunctionWhitelist() function is intended to restrict
swap execution to safe, pre-approved functions on whitelisted target routers.
At the same time, XChainSender._validateCommands() enforces that a user can
only bridge once from the source chain by allowing a single BRIDGE command
per order. However, this restriction can be bypassed if a malicious owner
whitelists the selector for AcrossAdapter.bridge() as a swap function. A user
can then craft a Swap command with SwapData.input targeting the bridge()
function on the adapter. Since SWAP commands are not restricted in count, this
allows a user to perform multiple bridging operations from the source chain by
embedding them in SWAP commands, defeating the intended single-bridge
restriction.

function setSwapFunctionWhitelist
 (address target, bytes4 selector, bool status) external onlyOwner {
 if (target == address(0)) revert AddressZero();

 // blacklist 2 selector: 0x23b872dd: IERC20.transferFrom and 0x095ea7b3:
 // IERC20.approve
 if
 (selector == 0x23b872dd || selector == 0x095ea7b3) revert InvalidWhitelistSe

 swapFunctionWhitelisted[keccak256(abi.encode
 (target, selector))] = status;

 emit SetSwapFunctionWhitelist(target, selector, status);
 }

11

Recommendation:
Prevent bridge() function selector (0x2da334b5 for bridge(bytes32,
(bytes32,bytes32,uint256,uint256,address,address,bytes,uint256,bytes32

,bytes))) from being whitelisted as a swap function.

[L-05] Resetting approval to zero may fail
with some non-standard tokens

The Dispatcher.dispatch() function, when executing a swap, approves the
swap router on the token before swapping, and then resets the router’s
allowance back to zero after the swap. However, some tokens (such as BNB on
BNB) revert when approving to zero, making these tokens incompatible with
the protocol. As a result, swaps involving these tokens would fail, limiting
token support and causing unexpected transaction reverts.

function dispatch(bytes32 orderId, PCSCommand[] memory pcsCommands) internal {
 //...
 if (!swapData.shouldTransferTokensBeforeSwap) {
 // safe practise: reset approval to 0 after swap
 ERC20(inputToken).safeApprove(swapData.target, 0);
 }
 //...
}

Same issue in AcrossAdapter.bridge() when inputToken allowance is reset
to zero after bridging:

function bridge(bytes32 orderId, BridgeData memory bridgeData)
 external
 payable
 override
 nonReentrant
 whenNotPaused
{
 //...
 if (!isNativeInput) {
 // safe practise: reset allowance to 0
 ERC20(bridgeData.inputToken.toAddress()).safeApprove(address
 (v3spokePool), 0);
 }
 //...
}

Recommendation: Check the allowance of the target swap router if it has been
fully consumed before resetting it back to zero.

12

[L-06] Bridging fee-on-transfer tokens may
fail transactions

The protocol is designed to support all types of ERC20 tokens, including those
with non-standard behaviors such as Fee-On-Transfer (FOT). However, FOT
tokens are not properly handled during the bridging process, which can lead to
transaction reverts.

function dispatch(bytes32 orderId, PCSCommand[] memory pcsCommands) internal {
 // --SNIP
 if (pcsCommand.command == Commands.SWAP) {
 // --SNIP
 } else if (pcsCommand.command == Commands.BRIDGE) {
 (BridgeData memory bridgeData) = abi.decode(pcsCommand.commandData,
 (BridgeData));
 address bridgeAdapter = bridgeData.target;
 // --SNIP
 if (inputToken == Constants.ETH) {
 // --SNIP
 }else {
 uint256 inputBalance = ERC20(inputToken).balanceOf(address(this));
==> if (inputBalance < bridgeData.inputAmount) {
 revert InsufficientBridgeInputBalance();
 }
 }
 }
}

In the code above, bridgeData.inputAmount is set by the user based on the
amount transferred to the contract when calling XChainSender::send . For FOT
tokens, the actual amount received by the contract is lower due to the transfer
fee, resulting in inputBalance being less than bridgeData.inputAmount and
causing the transaction to revert.

An easy way to mitigate the problem is to allow users to specify
Constants.CONTRACT_BALANCE as the bridge input amount, like the approach
used in swap commands. This enables the contract to dynamically use its
actual token balance, thus avoiding reverts due to FOT mechanics.

[L-07] Swaps with approve flow do not use
full CONTRACT_BALANCE

The dispatch function in the Dispatcher contract allows specifying
Constants.CONTRACT_BALANCE as the inputAmount for a SWAP command. This

13

is designed to signal that the swap should use the contract's entire balance of
the specified inputToken , which is particularly useful when the exact balance
is determined dynamically by previous operations (such as receiving funds
from the Across bridge or from previous swaps).

The issue occurs specifically when using the approval flow
(shouldTransferTokensBeforeSwap = false). While the contract correctly sets
the approval amount to the full balance, it fails to update the calldata sent to
the swap router:

function dispatch
 (bytes32 orderId, PCSCommand[] memory pcsCommands) internal {
 ...
 if (pcsCommand.command == Commands.SWAP) {
 ...
 uint256 inputAmount = swapData.inputAmount;
 address inputToken = swapData.inputToken;

 bool success;
 if (inputToken != Constants.ETH) {
 if (inputAmount == Constants.CONTRACT_BALANCE) {
 inputAmount = ERC20(inputToken).balanceOf(address
 (this));
 }
 // if inputToken is native, it will be sent with the
 // transaction
 if (swapData.shouldTransferTokensBeforeSwap) {
 ERC20(inputToken).safeTransfer
 (swapData.target, inputAmount);
 } else {
 ERC20(inputToken).safeApprove
 (swapData.target, inputAmount);
 }

 (success,) = swapData.target.call
 //(swapData.input); // @audit swapData.input is stale, still c

 if (!swapData.shouldTransferTokensBeforeSwap) {
 // safe practise: reset approval to 0 after swap
 ERC20(inputToken).safeApprove(swapData.target, 0);
 }
 ...
 }
 }

The issue is that while the contract updates the local inputAmount variable and
sets the correct approval amount, swapData.input (the calldata payload for the
swap router) is never updated to reflect the actual full balance. It still contains
the original encoded parameters with the outdated amount.

For example, when calling PancakeSwap's SmartRouter with an
exactInputSingle function:

14

struct ExactInputSingleParams {
 address tokenIn;
 address tokenOut;
 uint24 fee;
 address recipient;
 uint256 amountIn;
 uint256 amountOutMinimum;
 uint160 sqrtPriceLimitX96;
}

Swap routers executing the approve flow typically read the amountIn directly
from their calldata (swapData.input) and then use transferFrom to pull that
specific amount from the caller (Dispatcher). Because the amountIn in the
calldata was not updated, the router will attempt to pull the original amount,
not the full approved balance. This leads to the swap either failing or using
only a portion of the intended funds.

Some routers like the PancakeSwap V3SwapRouter have special handling for
CONTRACT_BALANCE, but this only works correctly in the direct transfer
flow, not in the approval flow:

function exactInputSingle(ExactInputSingleParams memory params)
 external
 payable
 override
 nonReentrant
 returns (uint256 amountOut)
 {
 // use amountIn == Constants.CONTRACT_BALANCE as a flag to swap the
 // entire balance of the contract
 bool hasAlreadyPaid;
 if (params.amountIn == Constants.CONTRACT_BALANCE) {
 hasAlreadyPaid = true;
 params.amountIn = IERC20(params.tokenIn).balanceOf(address(this));
 }

 amountOut = exactInputInternal(
 params.amountIn,
 params.recipient,
 params.sqrtPriceLimitX96,
 SwapCallbackData({
 path: abi.encodePacked
 (params.tokenIn, params.fee, params.tokenOut),
 payer: hasAlreadyPaid ? address(this) : msg.sender
 })
);
 require(amountOut >= params.amountOutMinimum);
 }

It leads to:

Swaps using the approval flow (shouldTransferTokensBeforeSwap = false)
with CONTRACT_BALANCE will not use the full available balance
Users receive fewer output tokens than expected.

15

Recommendations:

Option 1: Disallow the combination of inputAmount =
Constants.CONTRACT_BALANCE and shouldTransferTokensBeforeSwap =
false .

if
 (swapData.inputAmount == Constants.CONTRACT_BALANCE && !swapData.shouldTransferT
 revert IncompatibleSwapFlags(); // Define this custom error
 }

Option 2: Update the amountIn parameter within the swapData.input .
However, it requires encode and decode the calldata.

16

